6E(X²) - V(X) = X-1012P(X)1/31/61/61/3 A23/36B47/12C1/6D113/12Answer: D. 113/12 Read Explanation: E(X)=ΣxP(x)E(X)=ΣxP(x)E(X)=ΣxP(x)E(X)=−13+16+23=12E(X)= \frac{-1}{3}+\frac{1}{6}+\frac{2}{3} = \frac{1}{2}E(X)=3−1+61+32=21E(X2)=Σx2P(x)E(X^2)=Σx^2P(x)E(X2)=Σx2P(x)E(X2)=13+16+43=116E(X^2)=\frac{1}{3}+\frac{1}{6}+\frac{4}{3} = \frac{11}{6}E(X2)=31+61+34=611V(X)=E(X2)−[E(X)]2V(X)= E(X^2)-[E(X)]^2V(X)=E(X2)−[E(X)]2V(X)=116−(12)2=1912V(X) = \frac{11}{6}- (\frac{1}{2})^2 = \frac{19}{12}V(X)=611−(21)2=12196E(X2)−V(X)=6×116−1912=113126E(X^2) - V(X) = 6 \times \frac{11}{6} - \frac{19}{12} = \frac{113}{12}6E(X2)−V(X)=6×611−1219=12113 Read more in App