Challenger App

No.1 PSC Learning App

1M+ Downloads

$$Change the following recurring decimal into a fraction.

$0.\overline{49}$

A49/100

B49/90

C49/99

D49/9

Answer:

C. 49/99

Read Explanation:

let,x=0.4949let,{x}=0.49\overline{49}

100x=49.4949100x=49.49\overline{49}

99x=100xx99x=100x-x

99x=4999x=49

    x=4999\implies{x}=\frac{49}{99}

OROR

abcd=repeatedtermnumberof9sfortherepeatedterm\overline{abcd}=\frac{repeated term}{number of 9s for the repeated term}

0.49=49990.\overline{49}=\frac{49}{99}


Related Questions:

243 ന് എത്ര ഘടകങ്ങൾ ഉണ്ട്?
If I is subtracted from each odd digit and 2 is added to each even digit in the number 9345712, what will be difference between the largest and smallest digits thus formed?
If I is added to each odd digit and 2 is subtracted from each even digit in the number 53478231, what will be the sum of the digits that are second from the left and second from the right?
ചുവടെ കൊടുത്തിരിക്കുന്നവയിൽ ഒറ്റസംഖ്യ അല്ലാത്തത് ഏത്?
5 , 8 , 17 , 44 ... എന്ന ശ്രേണിയുടെ അടുത്ത പദം എത്ര ?