Challenger App

No.1 PSC Learning App

1M+ Downloads

Find the last two digits of  3328833^{288}

A41

B39

C31

D61

Answer:

A. 41

Read Explanation:

3328833^{288} = (334)72(33^4)^{72}

 


Related Questions:

461+462+463+4644^{61} + 4^{62} + 4^{63} + 4^{64} is divisible by

[1³ + 2³ + 3³ + ..... + 9³ + 10³] is equal to
237 ÷ ____ = 23700
ഏറ്റവും ചെറിയ അഭാജ്യസംഖ്യ ഏത്?
What are the LCM and HCF of the reciprocals of 18 and