Solution:
Given:
Size | 20 | 21 | 22 | 23 | 24 |
Frequency | 6 | 4 | 5 | 1 | 4 |
Concept used:
Mean = ∑fi∑fi.xi
Here,
xi =Size, fi = Frequency
Calculation:
Size(xi) | Frequency(fi) | xi.fi |
20 | 6 | 120 |
21 | 4 | 84 |
22 | 5 | 110 |
23 | 1 | 23 |
24 | 4 | 96 |
Total | 20 | 433 |
So, mean = 20433
⇒ 21.65
Now,
To find the mean deviation we have to construct another table
Size(xi) | Frequency(fi) | xi.fi | di |xi - mean| | fi.di |
20 | 6 | 120 | 1.65 | 9.90 |
21 | 4 | 84 | 0.65 | 2.60 |
22 | 5 | 110 | 0.35 | 1.75 |
23 | 1 | 23 | 1.35 | 1.35 |
24 | 4 | 96 | 2.35 | 9.40 |
Total | 20 | 433 | 6.35 | 25.00 |
So, mean deviation =∑fi∑fi.xi
⇒ 2025
⇒ 1.25
∴ The required answer is 1.25.