Challenger App

No.1 PSC Learning App

1M+ Downloads

If a = 0.125 then what is value of 4a24a+1+3a\sqrt{4a^2-4a+1}+3a ?

A1.500

B1.125

C1.250

D1.225

Answer:

B. 1.125

Read Explanation:

Solution:

Given:

a = 0.125

Concept used:

(A - B)2 = A2 - 2AB + B2

Calculation:

Now,

4a24a+1\sqrt{4a^2-4a+1}

(14a+4a2)⇒\sqrt{(1-4a+4a^2)}

(12a)2⇒\sqrt{(1-2a)^2}

(12a)⇒(1-2a)

So,

4a24a+1+3a\sqrt{4a^2-4a+1}+3a

⇒ (1 - 2a) + 3a

⇒ 1 + a

⇒ 1.125

∴ The required value of  4a24a+1+3a\sqrt{4a^2-4a+1}+3a is 1.125.


Related Questions:

If 2x + y = 6 and xy = 4, then find the value of 8x3 + y3 is:

Solve x2+5x+6x^2+5x+6

If xy = 16 and x2 + y2 = 32, then the value of (x + y) is:

If a+1/a=2a + 1/a =2 what is a2024+1a2024=?a^{2024}+\frac{1}{a^{2024}}=?

If a + b =10 and 3/7 of ab = 9,then the value of a3+b3=?a^3+b^3=?