Challenger App

No.1 PSC Learning App

1M+ Downloads

What is the degree of p(x)+q(x):

p(x)=4x4+3x2+6x+9p(x)=4x^4+3x^2+6x+9,q(x)=5x4+6x3+8q(x)=5x^4+6x^3+8

A8

B3

C4

D6

Answer:

C. 4

Read Explanation:

p(x)=4x4+3x2+6x+9p(x)=4x^4+3x^2+6x+9,q(x)=5x4+6x3+8q(x)=5x^4+6x^3+8

p(x)+q(x)=9x4+6x3+3x2+6x+17p(x)+q(x)=9x^4+6x^3+3x^2+6x+17

degree of p(x)+q(x) =4


Related Questions:

The expansion of (3a-4b-2c)2² is:
What is the nature of the roots of the quadratic equation x25x+7=0x^2 - 5x + 7 = 0 ?

If 1+31 + \sqrt{3} and 131 - \sqrt{3} are the roots of a quadratic equation, then the quadratic equation is:

image.png

Find the degree of the polynomial p(x)q(x); p(x)=2x2+4x+2p(x)=2x^2+4x+2,q(x)=4x+6q(x)=4x+6