Challenger App

No.1 PSC Learning App

1M+ Downloads

What is the value of sin2 45° + cos2 45° ?

A-1

B2

C1

D0

Answer:

C. 1

Read Explanation:

Solution:

Given:

sin2 45° + cos2 45°

Formula:

sin2 A + cos2 A = 1

Calculation:

∴ sin2 45° + cos2 45° = 1

Alternate Method

sin45° = cos 45° = 1/√2

∴ sin2 45° + cos2 45° = (1/√2)2 + (1/√2)2 = 1/2 + 1/2 = 1


Related Questions:

If sin A + sin²A = 1, then the value of the expression (cos² A + cos⁴A) =
(tan57° + cot37°)/ (tan33° + cot53° ) =?
Find the value of tan 8° tan 22° cot 60° tan 68° tan 82°

Convert Degree to Radian: 30

The value of cosec230sin245+sec260tan60cosec245sec260tan45\frac{{\rm cose{c^2}30^\circ {{\rm \sin }^2}45^\circ + {{\rm \sec }^2}60^\circ }}{{\rm tan60^\circ \rm cose{c^2}45^\circ - {{\rm \sec }^2}60^\circ \rm tan45^\circ }}  is: