Challenger App

No.1 PSC Learning App

1M+ Downloads

2n+1=322^{n+1}=32

ആയാൽ n എത്ര ?

A5

B4

C6

D3

Answer:

B. 4

Read Explanation:

2n+1=322^{n+1}=32

2n+1=252^{n+1}=2^5

am=an    m=n \because{a^m=a^n\implies{m=n}}

    n+1=5\implies{n+1=5}

n=51=4n=5-1=4

  • 21=22^1 = 2

  • 22=42^2 = 4

  • 23=82^3 = 8

  • 24=162^4 = 16

  • 25=322^5 = 32


Related Questions:

10×(23)2×(53)2=\sqrt{10\times{\sqrt{(2^3)^2}}\times\sqrt{(5^3)^2}}=

3n=2187\sqrt{3^n} = 2187,  n -ന്റെ വില കാണുക?

image.png

If √2^n = 128 ,then the value of n is