Challenger App

No.1 PSC Learning App

1M+ Downloads

2n+1=322^{n+1}=32

find n\text{find n} =

A5

B4

C6

D3

Answer:

B. 4

Read Explanation:

2n+1=322^{n+1}=32

2n+1=252^{n+1}=2^5

am=an    m=n \because{a^m=a^n\implies{m=n}}

    n+1=5\implies{n+1=5}

n=51=4n=5-1=4


Related Questions:

(x/y)12.y24.(z3)4=(x/y)^{12}.y^{24}.(z^3)^4=

(1)25+(1)50+(1)76(-1)^{25}+(-1)^{50} + (-1)^{76} = ____

a14am=a3\frac{a^{14}}{a^m}=a^3ആയാൽ m ൻ്റെവില എത്ര? 

(23)2=4x(2^3)^2=4^x.

 എങ്കിൽ 3x3^x ന്റെ വില എന്ത്?