Challenger App

No.1 PSC Learning App

1M+ Downloads

2n+1=322^{n+1}=32

find n\text{find n} =

A5

B4

C6

D3

Answer:

B. 4

Read Explanation:

2n+1=322^{n+1}=32

2n+1=252^{n+1}=2^5

am=an    m=n \because{a^m=a^n\implies{m=n}}

    n+1=5\implies{n+1=5}

n=51=4n=5-1=4


Related Questions:

53x2=625 5^{3x-2} = 625 ആയാൽ x കാണുക?

(a5)15×(a5)15=?(a^-5)^\frac1{5}\times(a^5)^\frac1{5}=?

4x=42x 4^ {x}= \frac4{2^ {x}} ആയാൽ x ന്റെ വിലയെന്ത്?

x1x=2x-\frac{1}{x}=2 ആയാൽ x2+1x2=?x^2+\frac{1}{x^2}=?

105×106107×108=\frac{10^5\times10^6}{10^7\times10^8}=