2n+1=322^{n+1}=322n+1=32find n\text{find n}find n = A5B4C6D3Answer: B. 4 Read Explanation: 2n+1=322^{n+1}=322n+1=322n+1=252^{n+1}=2^52n+1=25∵am=an ⟹ m=n \because{a^m=a^n\implies{m=n}}∵am=an⟹m=n ⟹ n+1=5\implies{n+1=5}⟹n+1=5n=5−1=4n=5-1=4n=5−1=4 Read more in App