Challenger App

No.1 PSC Learning App

1M+ Downloads
72-ലേക്ക് ഭാഗിക്കപ്പെട്ട 9-അക്കികളുടെ സംഖ്യ 83x93678y ആണെങ്കിൽ, (3x - 2y) യുടെ மதനം എങ്ങനെ ആയിരിക്കും?

A8

B10

C12

D13

Answer:

B. 10

Read Explanation:

പരിഹാരം: നൽകിയിരിക്കുന്നു: 83x93678y എന്ന 9-അക്കികളുടെ സംഖ്യ 72-ൽ ഭാഗിക്കപ്പെടുന്നു. ഉപയോഗിച്ച ആശയം: ഒരു സംഖ്യയിലെ അവസാനത്തെ മൂന്ന് അക്കങ്ങൾ 8-ൽ divisible ആണെങ്കിൽ, ആ സംഖ്യ മുഴുവനായും 8-ൽ divisible ആണ്. ഒരു സംഖ്യയിലെ അക്കങ്ങളുടെ തുക 9-ൽ divisible ആണെങ്കിൽ, ആ സംഖ്യ തന്നെ 9-ൽ divisible ആണ്. ഗണന: 83x93678y എന്ന 9-അക്കികളുടെ സംഖ്യം 72-ൽ divisible ആണെങ്കിൽ, അത് 8-യും 9-യും ഒരേ സമയം divisible ആയിരിക്കേണ്ടത് അനിവാര്യം. 83x93678y-യുടെ അവസാനത്തെ മൂന്ന് അക്കങ്ങൾ 78y ആണ്. അതാകുമ്പോൾ, 8-ൽ divisible ആാനോടുർച്ച, y 4 ആകണം. അപ്പോൾ, സംഖ്യയായേക്കുന്നു = 83x936784 ഇപ്പോൾ, 9-ൽ divisible ആകാൻ, 8 + 3 + x + 9 + 3 + 6 + 7 + 8 + 4 = 9-യുടെ ഒരു ഗുണകം ⇒ 48 + x = 9-യുടെ ഒരു ഗുണകം 9-ന്റെ ഒരു ഗുണകം ആയിരിക്കാനായി, x 6 ആകണം. അതുവഴി (48 + 6) δηλαδή 54 9-ന്റെ ഒരു ഗുണകമാകും. അതിനാൽ, ⇒ 3x - 2y ⇒ 3 × 6 - 2 × 4 ⇒ 10 ∴ (3x - 2y) യുടെ മൂല്യം 10 ആണ്.


Related Questions:

What is the greatest number, by which when 8954, 9806 and 11297 are divided, the remainder in each case is the same?
If 5 divides the integer n, the remainder is 2. What will be remainder if 7n is divided by 5?
Find the least possible number which when divided by 36, 49, 54 or 70 leaves remainders of 19, 32, 37 and 53, respectively.
ഒരു സംഖ്യയുടെ 2/5 ൻ്റെ 5/8 ൻ്റെ 4/7 = 22, എങ്കിൽ സംഖ്യ ഏത്?

What is the remainder when (255+323)(2^{55}+3^{23}) is divided by 5?