App Logo

No.1 PSC Learning App

1M+ Downloads
A boat can travel 27 km in one hour in still water and travels the same distance against the stream in 90 minutes. How much time will the boat take to travel 90km in the direction of stream?

A4 hours

B4.25 hours

C2.5 hours

D3.5 hours

Answer:

C. 2.5 hours

Read Explanation:

Letsbethespeedoftheboatandwbethespeedofthestream.</span></p><pstyle="color:rgb(0,0,0);margintop:2px;marginbottom:2px"datapxy="true"><spanstyle="color:rgb(0,0,0);fontfamily:Verdana,Geneva,sansserif;fontsize:14px">Let ‘s’ be the speed of the boat and ‘w’ be the speed of the stream. </span></p><p style="color: rgb(0,0,0); margin-top: 2px; margin-bottom: 2px" data-pxy="true"><span style="color: rgb(0,0,0); font-family: Verdana, Geneva, sans-serif; font-size: 14px">We have, s = 27 km/hr and27sw=1.5hours\frac{27}{s-w}=1.5hours

So s-w=18

$w=27-18=9kmph$

We get,$\frac{90}{18+9}=2.5hours$

Hence option C is Right answer.




Related Questions:

The speed of a boat is 10 km/h in still water. It covers a distance of 90 km in 15 hours going upstream. What is the speed of the stream?
നിശ്ചല ജലത്തിൽ ഒരു ബോട്ടിൻ്റെ വേഗം മണിക്കൂറിൽ 8 കി.മീറ്ററും ഒഴുക്കു വെള്ളത്തിന്റെ വേഗം മണിക്കൂറിൽ 2 കി.മീറ്ററും ആയാൽ ഒഴു ക്കിന് എതിരായി ബോട്ടിൻ്റെ വേഗത എന്ത്?
The speed of a boat along the stream is 12 km/hr and speed of the boat against the stream is 6 km/hr, how much time will the boat take to cross a distance of 27 km in still water?
A swimmer can swim downstream at 13 km/h and upstream at 7 km/h. Find the speed of swimmer in still water.
The speeds of two boats A and B in still water are 25 km/hr and 30 km/hr respectively. The boats are 165 km apart. If both begins moving toward each other, A going downstream while B upstream, then in how many hours they will meet?