App Logo

No.1 PSC Learning App

1M+ Downloads
A boy rows a boat against a stream flowing at 2 kmph for a distance of 9 km, and then turns round and rows back with the current. If the whole trip occupies 6 hours, find the boy’s rowing speed in still water.

A4 kmph

B3 kmph

C2 kmph

D5 kmph

Answer:

A. 4 kmph

Read Explanation:

Let the speed of rowing be X.

Speed of Stream is 2 kmph.

Then the equation formed is,

9X2+9X+2=6\frac{9}{X-2}+\frac{9}{X+2}=6

9(X+2)+9(X2)X222=6\frac{9(X+2)+9(X-2)}{X^2-2^2}=6

9X+18+9X18X24=6\frac{9X+18+9X-18}{X^2-4}=6

18X=16(X24)18X=16(X^2-4)

9X=8(X24)9X=8(X^2-4)

8X29X32=08X^2-9X-32=0

On solving, we get the value of X as 4.


Related Questions:

The speed of a boat in still water is 15 km/hr. It can go 30 km upstream and return downstream to the original point in 4 hrs 30 min. The speed of the stream is:
The current of a stream runs at the rate of 4 km an hour. A boat goes 6 km and comes back to the starting point in 2 hours. The speed of the boat in still water is
ഒരാൾ ഒഴുക്കിനൊപ്പം ഒരു കിലോമീറ്റർ നീന്താൻ 4 മിനിറ്റും ഒഴുക്കിനെതിരെ അത്രയും ദൂരം നീന്താൻ 10 മിനിറ്റും എടുക്കുന്നു. ഒഴുക്കിന്റെ വേഗമെന്ത് ?

A man rows 750 m in 600 seconds against the stream and returns in 7127\frac{1}{2} minutes. Its rowing speed in still water is (in km/ hr).

A man can row 40 kmph in still water and the river is running at 10 kmph. If the man takes 2 hr to row to a place and back, how far is the place?