App Logo

No.1 PSC Learning App

1M+ Downloads
A positive number exceed its positive square root by 30. Find the number.

A16

B36

C25

D49

Answer:

B. 36

Read Explanation:

Positive Square Exceeds its Square root by 30.

$X=\sqrt{X}+30$

$X-30=\sqrt{X}$

Squaring on both the sides we get,

(X30)2=X(X-30)^2=X

X260X+900=XX^2-60X+900=X

X236X25X+900=0X^2-36X-25X+900=0

X=36,25X=36,25

OnlyX=36satisfy</p><pstyle="color:rgb(0,0,0);margintop:2px;marginbottom:2px"datapxy="true">Only X=36 satisfy</p><p style="color: rgb(0,0,0); margin-top: 2px; margin-bottom: 2px" data-pxy="true">So answer is 36.


Related Questions:

√9604 =
If a² + b² = 234 and ab = 108 then find the value of {a + b}/{a -b}

1+4+21+16=\sqrt{1+{\sqrt{4+\sqrt{{21}+{\sqrt{16}}}}}}=

If9x9x1=6489^x - 9^{x -1} = 648, then find the value of xxx^x

81x² + 64y² ഒരു പൂർണ്ണ വർഗമാക്കാൻ അതിൽ എന്താണ് ചേർക്കേണ്ടത്?