Challenger App

No.1 PSC Learning App

1M+ Downloads
A regular hexagon is inscribed in a circle of radius 6 cm. Find its area enclosed by the hexagon:

A18√3

B36√3

C54√3

D72√3

Answer:

C. 54√3

Read Explanation:

1000112369.jpg

We know that the angle subtended by the sides of a regular polygon (in this case hexagon) is equal to 2π/n

where n is the number of sides of the regular polygon.

In this case, n=6

Thus, the angle AOB = 2π/6 = 60

Now, we know that in triangle AOB, OA=OB, since both are radii of the same circle. So, we can say that triangle OAB is an equilateral triangle.

Thus, the side AB is of length 6 units.

The formula for area of an equilateral triangle is √3/4 × (side)²

Since the length of the side of regular hexagon is 6 cm, so the area of the equilateral triangle AOB is

√3/4 × (side)² = √3/4 × (6)²

= √3/4 × 36

= 9√3

Since there are six such equilateral triangles, the area of the regular hexagon is

6 × 9√3

= 54√3 sq cm


Related Questions:

ഒരു സമഭുജ ത്രികോണ സ്തംഭത്തിന്റെ പാദ ചുറ്റളവ് 15 സെന്റീമീറ്റർ , ഉയരം 5സിഎം ആയാൽ വ്യാപ്തം എത്ര ?
10 സെന്റി മീറ്റർ നീളം, 6 സെന്റീമീറ്റർ വീതി, 3 സെന്റീമീറ്റർ ഉയരമുള്ള ചതുരാകൃതിയിലുള്ള ഒരു പെട്ടിയിൽ 3 സെന്റിമീറ്റർ വ്യാസമുള്ള എത്ര ഗോളങ്ങൾ അടുക്കിവക്കാം?
21 cm ആരമുള്ള ഗോളത്തിന്റെ വ്യാപ്തം എത്ര?
ഒരു ദീർഘചതുരാകൃതിയിലുള്ള വയലിന്റെ ഓരോ വശവും 20% കുറയുന്നു. ദീർഘചതുരാകൃതിയിലുള്ള വയലിന്റെ വിസ്തീർണ്ണം എത്ര % കുറയും?
ഒരു ദീർഘചതുരത്തിന്റെ നീളവും വീതിയും 8: 3 എന്ന അനുപാതത്തിലാണ്. ദീർഘചതുരത്തിന്റെ ചുറ്റളവ് 220 സെന്റിമീറ്ററാണെങ്കിൽ, ദീർഘചതുരത്തിന്റെ നീളം എന്താണ്?