AA'B'
BB'A'
CA'/B'
DA/B
Answer:
(AB)'=B'A' (BA)'=A'B'
Related Questions:
∣ −1 2 4 0 3 1 0 0 −4∣=\begin{vmatrix}\ \ \ \ -1 \ \ \ \ \ 2 \ \ \ \ \ \ 4\\ \ \ \ \ \ \ \ 0 \ \ \ \ \ \ 3 \ \ \ \ \ \ \ 1 \\\ \ \ \ \ \ \ \ 0 \ \ \ \ \ 0 \ \ \ \ -4 \end{vmatrix} = ∣∣ −1 2 4 0 3 1 0 0 −4∣∣=
The rank of A =A=[0 1 −3 −1 1 0 1 1 3 1 0 21 1 −2 0]A=\begin{bmatrix}0 \ \ \ \ 1 \ \ \ \ \ -3 \ \ \ \ \ \ -1\\ \ \ \ \ \\ \ 1 \ \ \ \ \ \ 0 \ \ \ \ \ \ \ \ 1 \ \ \ \ \ \ \ \ \ 1 \\ \\ \ \ \ 3 \ \ \ \ \ \ \ \ 1 \ \ \ \ \ \ \ \ 0 \ \ \ \ \ \ \ \ 2 \\\\ 1 \ \ \ \ 1 \ \ \ \ \ -2 \ \ \ \ \ \ \ \ \ 0 \end{bmatrix}A=⎣⎡0 1 −3 −1 1 0 1 1 3 1 0 21 1 −2 0⎦⎤ is