Challenger App

No.1 PSC Learning App

1M+ Downloads

A=x1x+1A=\frac{x-1}{x+1}, then the value of A1AA-\frac{1}{A} is:

A4(2x1)x21\frac{-4(2x-1)}{x^2-1}

Bx214(2x1){x^2-1}{-4(2x-1)}

Cx214(2x+1){x^2-1}{-4(2x+1)}

D4xx21{-4x}{x^2-1}

Answer:

4xx21{-4x}{x^2-1}

Read Explanation:

Given:

A=x1x+1A=\frac{x-1}{x+1}

Formula used:

(a+b)2=a2+2ab+b2(a+b)^2=a^2+2ab+b^2

(a2b2)=(ab)(a+b)(a^2-b^2)=(a-b)(a+b)

Calculation:

A1AA-\frac{1}{A}

Put the value of A=x1x+1A=\frac{x-1}{x+1} in the question

(x1)(x+1)(x+1)(x1)\frac{(x-1)}{(x+1)}-\frac{(x+1)}{(x-1)}

(x1)×(x+1)(x+1)×(x+1)x21\frac{(x-1)\times{(x+1)}-(x+1)\times{(x+1)}}{x^2-1}

 4xx21\frac{-4x}{x^2-1}

∴ Correct answer is  4xx21\frac{-4x}{x^2-1}

Short trick:

Put the value of x = 2 

So,

A=13A = \frac{1}{3}

According to the question,

A1AA-\frac{1}{A}

133\frac{1}{3}-3

83\frac{-8}{3}

Then check the option you get the answer 

Put the value in option (D)

4xx21\frac{-4x}{x^2-1}

(4×2)(41)\frac{(-4\times{2})}{(4-1)}

83\frac{-8}{3}

Correct answer is  4xx21\frac{-4x}{x^2-1}



Related Questions:

If (a+1/a3)2=49(a+1/a-3)^2=49then find a2+1/a2a^2+1/a^2

x/3 - x/2 = 1/3 + 1/2 ആയാൽ, x ന്റെ വില എത്ര ?

If x : y = 2 : 3 then the value of 3x+2y9x+5y\frac{3x+2y}{9x+5y} will be

ഗീതുവിൻറെ ബാഗിൽ എത്ര പുസ്തകങ്ങളുണ്ടെന്ന് ചോദിച്ചു. ഫിക്ഷനുകളെല്ലാം ആറെണ്ണമുണ്ടെന്നും പൊതുവിജ്ഞാന പുസ്തകങ്ങൾ മൂന്നെണ്ണമുണ്ടെന്നും എല്ലാ നോവലുകളും അഞ്ചെണ്ണമാണെന്നും അവൾ മറുപടി നൽകി. അവൾക്ക് ആകെ എത്ര പുസ്തകങ്ങൾ ഉണ്ടായിരുന്നു?
An NGO was formed to help poor patients admitted to a hospital. They collected fund as contribution and decided to distribute the collection equally as a multiple of 1000 to the patients. They also wanted to keep some amount towards their organisational expenses. When they counted the contribution, it was found that if the amount is to be distributed equally (as multiple of thousand ) among 7 patients Rs.5,000 will be left, if distributed equally to 5 people Rs 4,000 will be left and if distributed equally to 2 people, nothing will be left. If they decide to help 5 people , what is the minimum amount each will receive ?