Challenger App

No.1 PSC Learning App

1M+ Downloads
An aeroplane is moving at a constant altitude 'h'. At 10:00 AM, it is seen at an elevation of 30°. 1 minute later, it is observed at an elevation of 60°. If the speed of the plane is 960 km/h, then find 'h'.

A13.86 km

B15 km

C12.46 km

D20 km

Answer:

A. 13.86 km

Read Explanation:

image.png

Distance traveled

=96060=16km=\frac{960}{60}=16 km

d1d2=16kmd_1-d_2=16km

tan30=hd1d1=htan30tan 30 = \frac{h}{d_1} \Rightarrow d_1=\frac{h}{tan30}

tan60=hd2d2=htan60tan 60 = \frac{h}{d_2} \Rightarrow d_2=\frac{h}{tan60}.

=htan30htan60=\frac{h}{tan30}-\frac{h}{tan60}

=h13h3=16=\frac{h}{\frac{1}{\sqrt3}}-\frac{h}{\sqrt3}=16

=h=83=13.85km=h=8\sqrt3=13.85 km


Related Questions:

The value of k for which kx+3y-k+3=0 and 12x+ky=k have infinitely many solutions is :
Find the coefficient of x⁵ in (x+3)⁸

If a = 0.125 then what is value of 4a24a+1+3a\sqrt{4a^2-4a+1}+3a ?

If x4+1x4=34x^4+\frac{1}{x^4}=34, then the value of (x1x)2(x-\frac{1}{x})^2 will be

If a = 355, b = 356, c = 357, then find the value of a3 + b3 + c3 - 3abc.