App Logo

No.1 PSC Learning App

1M+ Downloads
Find (1 - cos² θ)(cot²θ + 1) - 1.

Asec²θ

B0

C2

D-2

Answer:

B. 0

Read Explanation:

Let's simplify the expression step-by-step:

  1. Use the Pythagorean identity:

    • 1 - cos²θ = sin²θ

  2. Use the trigonometric identity:

    • cot²θ + 1 = csc²θ

  3. Substitute these identities into the expression:

    • (1 - cos²θ)(cot²θ + 1) - 1 = (sin²θ)(csc²θ) - 1

  4. Use the reciprocal identity:

    • csc²θ = 1/sin²θ

  5. Substitute this into the expression:

    • (sin²θ)(1/sin²θ) - 1

  6. Simplify:

    • 1 - 1 = 0

Therefore, (1 - cos² θ)(cot²θ + 1) - 1 = 0.


Related Questions:

If tan 45 + sec 60 = x, find the value of x.
Convert Degree to Radian: 225
If cos (θ + 31°) = sin 47°, then what is the value of sin 5θ?

Find the value of cot2θcos2θ\sqrt{cot^2\theta-cos^2\theta}.

Two angles are complementary. The larger angle is 6º less than thrice the measure of the smaller angle. What is the measure of the larger angle?