Challenger App

No.1 PSC Learning App

1M+ Downloads
Find (1 - cos² θ)(cot²θ + 1) - 1.

Asec²θ

B0

C2

D-2

Answer:

B. 0

Read Explanation:

Let's simplify the expression step-by-step:

  1. Use the Pythagorean identity:

    • 1 - cos²θ = sin²θ

  2. Use the trigonometric identity:

    • cot²θ + 1 = csc²θ

  3. Substitute these identities into the expression:

    • (1 - cos²θ)(cot²θ + 1) - 1 = (sin²θ)(csc²θ) - 1

  4. Use the reciprocal identity:

    • csc²θ = 1/sin²θ

  5. Substitute this into the expression:

    • (sin²θ)(1/sin²θ) - 1

  6. Simplify:

    • 1 - 1 = 0

Therefore, (1 - cos² θ)(cot²θ + 1) - 1 = 0.


Related Questions:

Find the value of tan60tan151+tan60tan15\dfrac{\tan 60^\circ - \tan 15^\circ}{1 + \tan 60^\circ \tan 15^\circ}

The least value of 8 cosec2θ + 25 sin2 θ is:

AB = 6, AC = 4, ∠ BAC = 600 എന്നീ വശങ്ങളുള്ള സാമാന്തരികത്തിന്റെ വിസ്തീർണ്ണം കണ്ടെത്തുക.

1000114769.jpg
A wheel makes 360 revolutions in 1 minute. Through how many radians ddoes it turn in one second .
sin50 - sin70 + sin10 =