Find (1 - cos² θ)(cot²θ + 1) - 1.
Asec²θ
B0
C2
D-2
Answer:
B. 0
Read Explanation:
Let's simplify the expression step-by-step:
Use the Pythagorean identity:
1 - cos²θ = sin²θ
Use the trigonometric identity:
cot²θ + 1 = csc²θ
Substitute these identities into the expression:
(1 - cos²θ)(cot²θ + 1) - 1 = (sin²θ)(csc²θ) - 1
Use the reciprocal identity:
csc²θ = 1/sin²θ
Substitute this into the expression:
(sin²θ)(1/sin²θ) - 1
Simplify:
1 - 1 = 0
Therefore, (1 - cos² θ)(cot²θ + 1) - 1 = 0.