App Logo

No.1 PSC Learning App

1M+ Downloads
Find (1 - cos² θ)(cot²θ + 1) - 1.

Asec²θ

B0

C2

D-2

Answer:

B. 0

Read Explanation:

Let's simplify the expression step-by-step:

  1. Use the Pythagorean identity:

    • 1 - cos²θ = sin²θ

  2. Use the trigonometric identity:

    • cot²θ + 1 = csc²θ

  3. Substitute these identities into the expression:

    • (1 - cos²θ)(cot²θ + 1) - 1 = (sin²θ)(csc²θ) - 1

  4. Use the reciprocal identity:

    • csc²θ = 1/sin²θ

  5. Substitute this into the expression:

    • (sin²θ)(1/sin²θ) - 1

  6. Simplify:

    • 1 - 1 = 0

Therefore, (1 - cos² θ)(cot²θ + 1) - 1 = 0.


Related Questions:

cotθ=?cot\theta=?

Find the area of the triangle where AB = 10cm, BC = 8cm, ∠CAB = 30

1000114764.jpg

what is the ratio of sides of a triangle with angle 45°, 60°, 75°

1000114722.jpg
What is the value of tan y if (sin y + cos y)/ (sin y - cos y) = 3

Conert Radian to Degree :

7π4\frac{7\pi}{4}