App Logo

No.1 PSC Learning App

1M+ Downloads
Find the area of a square inscribed in a circle of radius 8 cm.

A144144 cm^2$$

B136136 cm^2$$

C64 $cm^2$

D128128 cm^2$$

Answer:

128128 cm^2$$

Read Explanation:

Diameter of the circle = 2 × 8 = 16 cm.

Diagonal of the square = √2 a

As we know

If square inscribed in a circle, then

Diagonal of the square = Diameter of the circle

√2 a = 16

⇒ a = 16/√2

⇒ a = 8 √2

Area of the square = a2 = 8 √2 ×\times 8 √2 = 128 cm2

image.png

Related Questions:

Sum of the interior angles of a polygon with 10 sides is:
ഒരു ദീർഘ ചതുരത്തിന്റെ വശങ്ങൾ 3:2 എന്ന അനുപാതത്തിലാണ്. അതിന്റെ ചുറ്റളവ് 180 മീറ്ററായാൽ നീളമെന്ത്?
256 ച. സെ.മീ. വിസ്തീർണമുള്ള ഒരു സമ ചതുരത്തിന്റെ ചുറ്റളവ് എത്രയായിരിക്കും
The lengths of two adjacent sides of a parallelogram are 5 cm and 3.5 cm respectively. One of its diagonals is 6.5 cm long, the area of the parallelogram is
The height of an equilateral triangle is 18 cm. Its area is