Challenger App

No.1 PSC Learning App

1M+ Downloads
Find the area of a triangle, whose sides are 0.24 m, 28 cm and 32 cm.

A84\sqrt{15}$ $cm^2

B82\sqrt{15}$ $cm^2

C86\sqrt{15}$ $cm^2

D88\sqrt{15}$ $cm^2

Answer:

84\sqrt{15}$ $cm^2

Read Explanation:

the area of a triangle with sides a, b, and c is given by:

Area = (s×(sa)×(sb)×(sc))\sqrt{(s × (s - a) × (s - b) × (s - c))}

where s is the semi-perimeter of the triangle:

s=(a+b+c)/2s = (a + b + c) / 2

Inserting our values:

s=(24+28+32)/2=42s = (24 + 28 + 32) / 2 = 42

Area=(42×(4224)×(4228)×(4232))Area = \sqrt{(42 × (42 - 24) × (42 - 28) × (42 - 32))}

Area=(42×18×14×10)Area = \sqrt{(42 × 18 × 14 × 10)}

Area=105840Area = \sqrt{105840}

We recognize that the expression can be rewritten to include a perfect square:

Area=(15×7056)Area = \sqrt{(15 × 7056)}

Area=8415Area = 84\sqrt{15} cm²


Related Questions:

In the figure ABCD is a rhombus , AD=10 centimetres, PA=6 centimetres, The area of rhombus is

ABC is an isosceles triangle . AB= 4cm , AC= 8cm . What is the perimeter of triangle ABC ?
image.png
വ്യത്യസ്തമായത് ഏത് ?
The sum of the inner angles of a polygon is 5760°. The number of sides of the polygon is: