App Logo

No.1 PSC Learning App

1M+ Downloads
Find the number of years in which an amount invested at 8% p.a. simple interest doubles itself.

A12 years

B11 years

C12.5 years

D13 years

Answer:

C. 12.5 years

Read Explanation:

Solution:

Given:

A certain sum of money becomes double at 8% p.a simple interest.

Let us assume the time taken by a Principle ( P ) is T years

Formula Used:

Simple Interest (S.I) = (P×R×T)100\frac{(P\times{R}\times{T})}{100}

Calculation:

⇒ As given The sum doubles itself

⇒ The S.I will be = 2P – P = P

⇒ From the above-given formula

P=(P×8×T)100P = \frac{(P\times{8}\times{T})}{100}

∴  T will be 1008=12.5years\frac{100}{8} = 12.5 years


Related Questions:

റാം P തുക, T വർഷത്തേക്ക് നിക്ഷേപിച്ചു. പ്രതിവർഷം 5% എന്ന ക്രമ പലിശയിൽ നിക്ഷേപിക്കുമ്പോൾ തുക 2 മടങ്ങായി മാറുകയാണെങ്കിൽ, തുക 5 മടങ്ങായി മാറുന്ന പലിശ നിരക്ക് എത്ര?
X took a loan of Rs. 12500 with simple interest for as many years as the rate of interest. If the interest paid at the end of the period was Rs. 18000, then what was the rate of interest?
A sum of money doubles it self in 5 years at a simple interest. Then what is the rate of interest ?
1000 രൂപയ്ക്ക് ഒരു മാസം 7.50 രൂപ പലിശയായാൽ പലിശനിരക്കെത്ര?
A sum of Rs. 22,400 amounts to Rs. 24,250 in 6 years at the rate of simple interest. What is the rate of interest (correct to two decimal places)?