Challenger App

No.1 PSC Learning App

1M+ Downloads
Find the number of years in which an amount invested at 8% p.a. simple interest doubles itself.

A12 years

B11 years

C12.5 years

D13 years

Answer:

C. 12.5 years

Read Explanation:

Solution:

Given:

A certain sum of money becomes double at 8% p.a simple interest.

Let us assume the time taken by a Principle ( P ) is T years

Formula Used:

Simple Interest (S.I) = (P×R×T)100\frac{(P\times{R}\times{T})}{100}

Calculation:

⇒ As given The sum doubles itself

⇒ The S.I will be = 2P – P = P

⇒ From the above-given formula

P=(P×8×T)100P = \frac{(P\times{8}\times{T})}{100}

∴  T will be 1008=12.5years\frac{100}{8} = 12.5 years


Related Questions:

A sum of Rs. 8,400 amounts to Rs. 11,046 at 8.75% p.a. simple interest in a certain time. What will be the simple interest (in Rs.) on a sum of Rs. 10,800 at the same rate for the same time?
A sum becomes Rs. 10650 in 5 years. and Rs. 11076 in 6 years at simple interest. What is the sum?
A sum of money at simple interest amounts to Rs. 500 in 3 years and Rs. 600 in 5 years. What is the rate of interest?
എത്ര രൂപയ്ക്ക് 5% സാധാരണ പലിശ നിരക്കിൽ 3 വർഷം കൊണ്ട് 225 രൂപ പലിശ കിട്ടും?
സാധാരണ പലിശയ്ക്ക് നിക്ഷേപിച്ച 500 രൂപ 3 വർഷം കൊണ്ട് 620 രൂപ ആയാൽ പലിശ നിരക്ക് എത്ര?