App Logo

No.1 PSC Learning App

1M+ Downloads
Find the number of years in which an amount invested at 8% p.a. simple interest doubles itself.

A12 years

B11 years

C12.5 years

D13 years

Answer:

C. 12.5 years

Read Explanation:

Solution: Given: A certain sum of money becomes double at 8% p.a simple interest. Let us assume the time taken by a Principle ( P ) is T years Formula Used: Simple Interest (S.I) = (P × R × T)/100 Calculation: ⇒ As given The sum doubles itself ⇒ The S.I will be = 2P – P = P ⇒ From the above-given formula ⇒ P = (P× 8× T)/100 ∴ T will be 100/8 = 12.5 years


Related Questions:

സാധാരണ പലിശ നിരക്കിൽ 450 രൂപ മൂന്നുവർഷം കൊണ്ട് 540 രൂപയായാൽ, പലിശ നിരക്ക് എന്ത്?
ഒരാൾ 3000 രൂപ 12 % പലിശ നിരക്കിൽ ഒരു ബാങ്കിൽ നിക്ഷേപിക്കുന്നു. എങ്കിൽ 2 വർഷം കഴിഞ്ഞ് അയാൾക്ക് കിട്ടുന്ന തുകയെന്ത് ?
At simple interest, a certain sum of money amounts to ₹1.250 in 2 years and to ₹2,000 in 5 years. Find the rate of interest per annum (rounded off to two places of decimal).
R borrowed Rs. 1,200 at 13% per annum simple interest. What amount will R pay to clear the debt after 5 years?
What would be the simple interest obtained on an amount of Rs. 8,435 at the rate of 12% p.a, after 4 years?