Challenger App

No.1 PSC Learning App

1M+ Downloads
Find the number of years in which an amount invested at 8% p.a. simple interest doubles itself.

A12 years

B11 years

C12.5 years

D13 years

Answer:

C. 12.5 years

Read Explanation:

Solution: Given: A certain sum of money becomes double at 8% p.a simple interest. Let us assume the time taken by a Principle ( P ) is T years Formula Used: Simple Interest (S.I) = (P × R × T)/100 Calculation: ⇒ As given The sum doubles itself ⇒ The S.I will be = 2P – P = P ⇒ From the above-given formula ⇒ P = (P× 8× T)/100 ∴ T will be 100/8 = 12.5 years


Related Questions:

A sum of Rs. 12500 gives interest of Rs. 5625 in T years at simple interest. If the rate of interest is 7.5%, then what will be the value of T?
ഒരു സ്വകാര്യ പണമിടപാട് സ്ഥാപനം ആയിരം രൂപയ്ക്ക് ഒരു മാസം 40 രൂപ എന്ന നിരക്കിൽ പലിശയിടാക്കുന്നു എങ്കിൽ പലിശ നിരക്ക് കണക്കാക്കുക
The price of a scooter which was bought for ₹84,000 depreciates at the rate of 10% p.a. Find its price after 2 years?
A certain amount earns simple interest of Rs. 1750 after 7 years. Had the interest been 2% more, how much more interest would it have earned?
3000 രൂപയ്ക്ക് 2 വർഷത്തെ സാധാരണപലിശ 240 രൂപയാണെങ്കിൽ പലിശ നിരക്ക് എത്ര ?