Challenger App

No.1 PSC Learning App

1M+ Downloads
Find the number of zeros at the right end of 300! - 100!

A25

B20

C24

D19

Answer:

C. 24

Read Explanation:

While subtracting two numbers, the numbers of zeros will depend on the number with lesser number of zeros. The number of zeroes at the end of 100! will be less than the number of zeroes at the end of 300! number of zeros at the right end of 100! = power of 5 in 100! divide 100 by 5 No. of zeroes = Sum of all quotient. Divide divisor by 5 and add the respective quotient. 100 ÷ 5 = 20. 20 ÷ 5 = 4. No. of zeroes = 24


Related Questions:

നെഗീവ് 5 ൽ നിന്നും ഏത് നമ്പർ കുറച്ചാലാണ് നെഗറ്റീവ് 14 കിട്ടുക?
Which of the following number divides 7386071?

The value of [(0.111)3+(0.222)3(0.333)3+(0.333)2×(0.222)]2=[(0.111)^3+(0.222)^3-(0.333)^3+(0.333)^2\times(0.222)]^2=

3343^{34}ൻ്റെ ഒറ്റയുടെ സ്ഥാനത്തെ അക്കം ഏത്?

Find the x satisfying each of the following equation: |x + 1| = | x - 5|