App Logo

No.1 PSC Learning App

1M+ Downloads
Find the slant height of a cone whose volume is 1232 cm³ and radius of the base is 7 cm.

A25 cm

B12 cm

C32 cm

D18 cm

Answer:

A. 25 cm

Read Explanation:

• Volume of the cone =(1/3)πr²h = 1232 • h = 1232x3 /πr²= (1232*3*7)/(22*7*7) • Slant height l is given by the relation I = square root of (h²+r²) = square root of (24²+7²) = square root of (625) =25 cm • Slant height of the cone is 25 cm


Related Questions:

The radius of the base of a cylinder is increased from 4 cm to 16 cm, but its curved surface area remains unchanged. If the initial height of the cylinder was 4 cm, what will be its new height?
രണ്ട് ഗോളങ്ങളുടെ ആരങ്ങൾ തമ്മിലുള്ള അംശബന്ധം 2 : 3 ആയാൽ അവയുടെ വ്യാപ്തങ്ങൾ തമ്മിലുള്ള അംശബന്ധം എന്ത് ?
The perimeter of a rectangular plotis 48 m and area is 108 sq.m. The dimensions of the plot are
The diagonal of the square is 8√2 cm. Find the diagonal of another square whose area is triple that of the first square.
The height of trapezium is 68 cm , and the sum of its parallel sides is 75cm. If the area of trapezium is 617\frac{6}{17} times of the area of square, the the length of diagonal of the square is? (Take 2=1.41\sqrt{2}=1.41)