Challenger App

No.1 PSC Learning App

1M+ Downloads
Find the slant height of a cone whose volume is 1232 cm³ and radius of the base is 7 cm.

A25 cm

B12 cm

C32 cm

D18 cm

Answer:

A. 25 cm

Read Explanation:

• Volume of the cone =(1/3)πr²h = 1232 • h = 1232x3 /πr²= (1232*3*7)/(22*7*7) • Slant height l is given by the relation I = square root of (h²+r²) = square root of (24²+7²) = square root of (625) =25 cm • Slant height of the cone is 25 cm


Related Questions:

The ratio between the length and the breadth of a rectangular park is 3 : 2. If a man cycling along the boundary of the park at the speed of 12km/hour completes one round in 8 minutes, then the area of the park is
The ratio of the area of a square to that of the square drawn on its diagonal is :

The area of a rhombus is 24m224 m^2 and the length of one of its diagonals is 8 m. The length of each side of the rhombus will be:

27 സെന്റിമീറ്റർ ആരം ഉള്ള ഒരു വലിയ ഗോളമുണ്ടാക്കാൻ, 9 സെന്റിമീറ്റർ ആരമുള്ള ചെറിയ ഗോളങ്ങൾ എത്ര എണ്ണം ഉരുക്കിയിട്ടുണ്ടാകും ?
സമചതുരാകൃതിയിൽ ആയ ഒരു സ്ഥലത്തിന് 9216 ചതുരശ്ര മീറ്റർ പരപ്പളവ് ആണുള്ളത് . ഇതിന്റെ ഒരു വശത്തിന് എത്ര മീറ്റർ നീളമുണ്ട്?