App Logo

No.1 PSC Learning App

1M+ Downloads
Find the smallest perfect square number divisible by 12, 15 and 18.

A900

B1600

C400

D100

Answer:

A. 900

Read Explanation:

Given:

The numbers are 12, 15 and 18.

Concept used:

To make N(LCM) = xa ×\times yb ×\times zperfect square. (where x, y and z are prime numbers and a, b and c are integers)

Multiply the number by the same number whose power is odd.

Calculations:

12 = 22 4\times 31

15 = 31 \times 51

18 = 21 \times 32

N =  22 \times 32 \times 51

Multiply N by 5 to get perfect square,

5N = 22\times3<spanstyle="color:inherit">23<span style="color: inherit">2\times$ 52 = 900

∴ The smallest perfect square number divisible by 12, 15 and 18 is 900.


Related Questions:

ഒരു സംഖ്യയിലേക്ക് 26 ചേർക്കുകയാണെങ്കിൽ, അത് സ്വയം 5/3 ആയി മാറുന്നു. ആ സംഖ്യയുടെ അക്കങ്ങളുടെ വ്യത്യാസം എന്താണ്?
What is the least number added to 2488 so that it is completely divisible by 3,4,5 and 6?
If 5 divided the integer n, the remainder is 2. What will be remainder if 7n is divided by 5?
Find the value of A for which the number 7365A2 is divisible by 9.
The sum of digits of a two digit number is 9. If 27 is subtracted from the number, the digits are reversed. Find the number.