Challenger App

No.1 PSC Learning App

1M+ Downloads
Find the smallest perfect square number divisible by 12, 15 and 18.

A900

B1600

C400

D100

Answer:

A. 900

Read Explanation:

Given:

The numbers are 12, 15 and 18.

Concept used:

To make N(LCM) = xa ×\times yb ×\times zperfect square. (where x, y and z are prime numbers and a, b and c are integers)

Multiply the number by the same number whose power is odd.

Calculations:

12 = 22 4\times 31

15 = 31 \times 51

18 = 21 \times 32

N =  22 \times 32 \times 51

Multiply N by 5 to get perfect square,

5N = 22\times3<spanstyle="color:inherit">23<span style="color: inherit">2\times$ 52 = 900

∴ The smallest perfect square number divisible by 12, 15 and 18 is 900.


Related Questions:

What should replace * in the number 94*2357, so that number is divisible by 11?
4851A53B is divisible by 9 and B is an even number, then find the sum of all the values of A.
If 5 divides the integer n, the remainder is 2. What will be remainder if 7n is divided by 5?
A natural number, when divided by 3, 4, 6 and 7, leaves a remainder of 2 in each case. What is the smallest of all such numbers?
9 കൊണ്ട് നിശ്ശേഷം ഹരിക്കാൻ സാധിക്കുന്ന സംഖ്യയാവാൻ 8859 -നോട് കൂട്ടേണ്ട ഏറ്റവും ചെറിയ സംഖ്യ ഏത് ?