Challenger App

No.1 PSC Learning App

1M+ Downloads
Find the value of k, Points (1,3) , (3,9) and (0.k) are collinear.

A3

B-3

C1

D0

Answer:

D. 0

Read Explanation:

If the points are collinear then they will not form a triangl.

The points are (1,3),(3,9),(0,k)

Area=12[x1(y2y3)+x2(y3y1)+x3(y1y2)]=0Area=\frac{1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]=0

We have,

x1=1,y1=3,x2=3,y2=9,x3=0,y3=kx_1=1,y_1=3,x_2=3,y_2=9,x_3=0,y_3=k

Putting these values

12[1(9k)+3(k3)+0(39)]=0\frac{1}{2}[1(9-k)+3(k-3)+0(3-9)]=0

1(9k)+3(k3)+0=01(9-k)+3(k-3)+0=0

9k+3k9=09-k+3k-9=0

2k+0=02k+0=0

k=0k=0


Related Questions:

If sec 44 cosec (3A-50°), where 44 and 34 are acute angles, find the value of A + 75.
sin A = 1/2 and cos B = 1/2 , then the value of (A+B) is
Find the value of cos 120° cos 240° cos 180° cos 60°.
If tan 45 + sec 60 = x, find the value of x.

Conert Radian to Degree :

9π3\frac{9\pi}{3}