App Logo

No.1 PSC Learning App

1M+ Downloads
Find two consecutive odd positive integers, sum of whose squares is 290?

A9, 11

B11,13

C7, 9

D13, 15

Answer:

B. 11,13

Read Explanation:

Let two consecutive odd positive integers be X, X + 2

X2+(X+2)2=290X^2 + (X+2)^2=290

X2+X2+4X+4=290X^2+X^2+4X+4= 290

2X2+4X286=02X^2+4X-286=0

X2+2X143=0X^2+2X-143=0

X=11X=11

X+2=13X+2=13


Related Questions:

If a + b = 10 and 37\frac{3}{7} of ab = 9, then the value of a3 + b3 is:

രണ്ടു സംഖ്യകളുടെ തുക 6 അവയുടെ ഗുണനഫലം 8, എങ്കിൽ അവയുടെ വ്യുൽക്രമങ്ങളുടെ തുക എന്ത്
a² + b² = 34, ab= 15 ആയാൽ a + b എത്ര?

If x4+1x4=34x^4+\frac{1}{x^4}=34, then the value of (x1x)2(x-\frac{1}{x})^2 will be

The value of \6.35×6.35×6.35+3.65×3.65×3.6563.5×63.5+36.5×36.563.5×36.5\frac{6.35 \times 6.35 \times 6.35 + 3.65 \times 3.65 \times 3.65}{63.5 \times 63.5 + 36.5 \times 36.5 - 63.5 \times 36.5} is equal to