For which value of 'k' the points (7,-2),(5,1),(3,k) are collinear ?A-4B4C-8D8Answer: B. 4 Read Explanation: Since the points are collinear ,12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]=0\frac{1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]=021[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]=0Take (7,−2)as(x1,y1),(5,1)as(x2,y2)and(3,k)as(x3,y3)(7,-2) as (x_1,y_1), (5,1) as (x_2,y_2) and (3,k) as(x_3,y_3)(7,−2)as(x1,y1),(5,1)as(x2,y2)and(3,k)as(x3,y3)we have,7(1−k)+5(k+2)+3(−2−1)=07(1-k)+5(k+2)+3(-2-1)=07(1−k)+5(k+2)+3(−2−1)=07−7k+5k−9=07-7k+5k-9=07−7k+5k−9=02k=82k=82k=8k=8/2=4k=8/2=4k=8/2=4 Read more in App