Challenger App

No.1 PSC Learning App

1M+ Downloads
For which value of 'k' the points (7,-2),(5,1),(3,k) are collinear ?

A-4

B4

C-8

D8

Answer:

B. 4

Read Explanation:

Since the points are collinear ,

12[x1(y2y3)+x2(y3y1)+x3(y1y2)]=0\frac{1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]=0

Take (7,2)as(x1,y1),(5,1)as(x2,y2)and(3,k)as(x3,y3)(7,-2) as (x_1,y_1), (5,1) as (x_2,y_2) and (3,k) as(x_3,y_3)

we have,

7(1k)+5(k+2)+3(21)=07(1-k)+5(k+2)+3(-2-1)=0

77k+5k9=07-7k+5k-9=0

2k=82k=8

k=8/2=4k=8/2=4


Related Questions:

image.png
image.png
If tan x = cot(45° + 2x), then what is the value of x?

The least value of 8 cosec2θ + 25 sin2 θ is:

image.png