Challenger App

No.1 PSC Learning App

1M+ Downloads

Given that 870.27=x87^{0.27} = x, 870.15=y87^{0.15}= y and xz=y6x^z = y^6 , then the value of z is close to:

A5.77

B2.15

C3.16

D3.33

Answer:

D. 3.33

Read Explanation:

Let's solve this problem using the properties of exponents:

  1. Express x and y in terms of 87:

    • x=870.27x = 87^{0.27}

    • y=870.15y = 87^{0.15}

  2. Substitute x and y into the equation x^z = y^6:

    • (870.27)z=(870.15)6(87^{0.27})^z = (87^{0.15})^6

  3. Apply the power of a power rule (am)n=amn(a^m)^n = a^{m*n}:

    • 870.27z=870.15687^{0.27z} = 87^{0.15 * 6}

    • 870.27z=870.987^{0.27z} = 87^{0.9}

  4. Since the bases are the same, equate the exponents:

    • 0.27z = 0.9

  5. Solve for z:

    • z = 0.9 / 0.27

    • z = 90 / 27

    • z = 10 / 3

    • z = 3.333...

Therefore, the value of z is close to 3.33.


Related Questions:

a14am=a3\frac{a^{14}}{a^m}=a^3ആയാൽ m ൻ്റെവില എത്ര? 

(1258)2/3(16625)1/2=(\frac{125}{8})^{2/3}(\frac{16}{625})^{1/2}=

9x+3x90=09^x+3^x-90=0എങ്കിൽ x എത്ര ?

3n=2187\sqrt{3^n} = 2187,  n -ന്റെ വില കാണുക?

5m+15m=100 5 ^{m + 1 } - 5 ^m = 100 ആയാൽ  m എത്ര?