Challenger App

No.1 PSC Learning App

1M+ Downloads
If 4θ is an acute angle, and cot 4θ = tan (θ - 5°) , then what is the value of θ?

A24°

B45°

C21°

D19°

Answer:

D. 19°

Read Explanation:

Solution: Given: 4θ is an acute angle, And cot 4θ = tan (θ - 5°). Formula used: tan (90° - θ) = cot θ Calculation: cot 4θ = tan (θ -5°) ⇒ tan (90° - 4θ) = tan (θ -5°) ⇒ 90° - 4θ = θ -5° ⇒ 90° + 5° = θ + 4θ ⇒ 95° = 5θ ⇒ θ = 19° ∴ the value of θ is 19°.


Related Questions:

image.png
If cot(2θ + 25°) = tan(θ + 20°), then find cot3θ + sec3θ.

In the given figure ABC=ABD,BC=BDthenCAB=\angle{ABC} = \angle{ABD}, BC = BD then \triangle{CAB} =\triangle___________

image.png
If tan 45 + sec 60 = x, find the value of x.

In the figure <CAB=30°, <CPB=60°. AP 10 centimeters. Area of the rectangle ABCD is.............................. square centimeters.

WhatsApp Image 2024-11-30 at 10.23.08.jpeg