App Logo

No.1 PSC Learning App

1M+ Downloads
If 4θ is an acute angle, and cot 4θ = tan (θ - 5°) , then what is the value of θ?

A24°

B45°

C21°

D19°

Answer:

D. 19°

Read Explanation:

Solution: Given: 4θ is an acute angle, And cot 4θ = tan (θ - 5°). Formula used: tan (90° - θ) = cot θ Calculation: cot 4θ = tan (θ -5°) ⇒ tan (90° - 4θ) = tan (θ -5°) ⇒ 90° - 4θ = θ -5° ⇒ 90° + 5° = θ + 4θ ⇒ 95° = 5θ ⇒ θ = 19° ∴ the value of θ is 19°.


Related Questions:

what is the ratio of sides of a triangle with angle 45°, 60°, 75°

1000114722.jpg
image.png
If sin A + sin²A = 1, then the value of the expression (cos² A + cos⁴A) =
If sec3x = cosec(3x - 45°), where 3x is an acute angle, then x is equal to:
image.png