Challenger App

No.1 PSC Learning App

1M+ Downloads

If 4 cos2θ - 3 sin2θ + 2 = 0, then the value of tanθ is (where 0 ≤ θ < 90°)

A2\sqrt{2}

B6\sqrt{6}

C13\frac{1}{\sqrt{3}}

D1

Answer:

6\sqrt{6}

Read Explanation:

Solution:

Given

4 cos2 θ - 3 sin2 θ + 2 = 0

Formula:

sin2θ + cos2θ = 1

tan2θ = sin2θ/cos2θ

Calculation:

4 cos2θ - 3 sin2θ + 2 = 0

⇒ 4 cos2θ - 3 (1 - cos2θ) + 2 = 0

⇒ 4 cos2θ - 3 + 3 cos2θ + 2 = 0

⇒ 7 cos2θ - 1 = 0

⇒ 7 cos2θ = 1

⇒ cos2θ = 1/7

sin2θ + cos2θ = 1

⇒ sin2θ = 1 - 1/7

⇒ sin2θ = 6/7

Now,

tan2θ = sin2θ/cos2θ

⇒ tan2θ = (6/7)/(1/7)

⇒ tan2θ = 6

∴ tanθ = √6


Related Questions:

If CosA=35CosA=\frac{3}{5}, Find tanA?

AB = 10cm, BC = 8cm, ∠CAB = 30 എന്ന ത്രികോണത്തിന്റെ വിസ്തീർണ്ണം കണ്ടെത്തുക

1000114764.jpg
If sin A + sin²A = 1, then the value of the expression (cos² A + cos⁴A) =
A kite is flying at a height of 60m from the level surface attached to a string inclined at 30° to the horizontal. Then the length of the string in metres is :
If tan x = cot(45° + 2x), then what is the value of x?