Challenger App

No.1 PSC Learning App

1M+ Downloads

If 4a+15a=44a+\frac{1}{5a}=4 , then the value of 25a2+116a225a^2+\frac{1}{16a^2} is:

A55/2

B45/4

C45/2

D33/2

Answer:

C. 45/2

Read Explanation:

Solution:

Given:

4a+15a=44a + \frac{1}{5a}=4

Formula used:

(a + b)2 = a2 + b2 + 2ab

Calculation:

Multiply the given equation by 54\frac{5}{4}

54(4a+15a)=54(4)\frac{5}{4}(4a+\frac{1}{5a}) =\frac{5}{4(4)}

5a+14a=55a +\frac{1}{4a} = 5

Squaring both sides, we get

(5a+14a)2=52(5a +\frac{1}{4a}) ^2= 5^2

25a2+116a2+2(5a)(14a)=2525a^2+\frac{1}{16a^2}+2(5a)(\frac{1}{4a})=25

25a2+116a2+52=2525a^2+\frac{1}{16a^2}+\frac{5}{2}=25

25a2+116a2=255225a^2+\frac{1}{16a^2}=25-\frac{5}{2}

25a2+116a2=45225a^2+\frac{1}{16a^2}=\frac{45}{2}

∴ The correct answer is 452\frac{45}{2}


Related Questions:

ഒരു സംഖ്യയുടെ 4 മടങ്ങിനെക്കാൾ 5 കുറവ്, ആ സംഖ്യയുടെ 3 മടങ്ങിനെക്കാൾ 3 കൂടുതലാണ്. എന്നാൽ സംഖ്യ ഏത് ?

If x - 2y = 3 and xy = 5, find the value of x24y2x^2-4y^2

If x=31x =\sqrt{3} - 1 and y=3+1y =\sqrt{3}+1 then (x4y4)(x+y)2\frac{(x^4-y^4)}{(x+y)^2} is equal to ?

1.25×1.25-2×1.25×0.25+0.25×0.25
Solve the inequality : -3x < 15