App Logo

No.1 PSC Learning App

1M+ Downloads
If 4θ is an acute angle, and cot 4θ = tan (θ - 5°) , then what is the value of θ?

A24°

B45°

C21°

D19°

Answer:

D. 19°

Read Explanation:

Solution: Given: 4θ is an acute angle, And cot 4θ = tan (θ - 5°). Formula used: tan (90° - θ) = cot θ Calculation: cot 4θ = tan (θ -5°) ⇒ tan (90° - 4θ) = tan (θ -5°) ⇒ 90° - 4θ = θ -5° ⇒ 90° + 5° = θ + 4θ ⇒ 95° = 5θ ⇒ θ = 19° ∴ the value of θ is 19°.


Related Questions:

cosecθsecθ=?\frac{cosec\theta}{sec\theta}=?

figure shows a triangle and its circumcircle what is the radius of the circle

1000115094.jpg

AC = 9cm, angle ABC= 60°

The least value of 8 cosec2θ + 25 sin2 θ is:

Find the value of

Sin0o×sin1o×sin2o×sin30...............Sin890isSin0^o\times{sin1^o}\times{sin2^o}\times{sin3^0}...............Sin89^0 is

If xsin30°cos60° = sin45°cos45°, then the value of x is: