Challenger App

No.1 PSC Learning App

1M+ Downloads

If a + b =10 and 3/7 of ab = 9,then the value of a3+b3=?a^3+b^3=?

A270

B370

C200

D142

Answer:

B. 370

Read Explanation:

a3+b3=(a+b)(a2ab+b2)a^3+b^3=(a+b)(a^2-ab+b^2)

3/7×ab=93/7\times{ab}=9

    ab=9×7/3=21\implies{ab}={9\times7}/3=21

(a+b)2=a2+2ab+b2(a+b)^2=a^2+2ab+b^2

102=a2+b2+2×2110^2=a^2+b^2+2\times21

a2+b2=10042=58a^2+b^2=100-42=58

a3+b3=(10)(5821)a^3+b^3=(10)(58-21)

=370=370


Related Questions:

Which of the following is true ?
5 x 3 is the difference between a three digit number and the sum of its digits. Then what number is x ?

If the sum of the roots of the quadratic equation $5x^2+bx+4=0 is 9, the find the value of b.

The value of \6.35×6.35×6.35+3.65×3.65×3.6563.5×63.5+36.5×36.563.5×36.5\frac{6.35 \times 6.35 \times 6.35 + 3.65 \times 3.65 \times 3.65}{63.5 \times 63.5 + 36.5 \times 36.5 - 63.5 \times 36.5} is equal to

15/ P = 3 ആയാൽ P എത്ര ?