If a point P(k,7) divides the line segment joining A(8,9) and B(1,2) in a ratio m:n then find the values of m and n.Am=5,n=2Bm=7,n=1Cm=2,n=5Dm=1,n=7Answer: C. m=2,n=5 Read Explanation: x1=8,y1=9,x2=1,y2=2,x=k,y=7x_1=8,y_1=9,x_2=1,y_2=2,x=k,y=7x1=8,y1=9,x2=1,y2=2,x=k,y=7P(x,y)=(mx2+nx1m+n,my2+ny1m+n)P(x,y)=(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n})P(x,y)=(m+nmx2+nx1,m+nmy2+ny1)(k,7)=(m×1+n×8m+n,m×2+n×9m+n)(k,7)=(\frac{m \times 1 +n\times8}{m+n},\frac{m \times 2 +n \times 9}{m+n})(k,7)=(m+nm×1+n×8,m+nm×2+n×9)m×2+n×9m+n=7\frac{m \times2+n\times9}{m+n}=7m+nm×2+n×9=72m+9n=7m+7n2m+9n=7m+7n2m+9n=7m+7n−5m=−2n-5m=-2n−5m=−2nmn=25\frac{m}{n}=\frac{2}{5}nm=52m=2,n=5m=2,n=5m=2,n=5 Read more in App