Challenger App

No.1 PSC Learning App

1M+ Downloads
If p + q = 10 and pq = 5 then find the value of p/q + q/p

A22

B20

C18

D16

Answer:

C. 18

Read Explanation:

  • The expression becomes: (p × p) / (q × p) + (q × q) / (p × q) = (p2 + q2) / pq.

  • We are given p + q = 10 and pq = 5.

  • Find p2 + q2:. Recall the algebraic identity for squaring a binomial: (a + b)2 = a2 + b2 + 2ab.

  • Applying this to our problem: (p + q)2 = p2 + q2 + 2pq.

  • We want to find p2 + q2, so rearrange the identity: p2 + q2 = (p + q)2 - 2pq.

  • Now, substitute the given values: p2 + q2 = (10)2 - 2(5).

  • Calculate the values: p2 + q2 = 100 - 10 = 90.

  • Substitute Back into the Simplified Expression: Now we have all the components for (p2 + q2) / pq.

  • Substitute the calculated values: 90 / 5.

  • Perform the division: 90 / 5 = 18.


Related Questions:

√1.4641 എത്ര?
325x325=105625 ആയാൽ (3.25)² ന്റെ വില എത്ര?
√48 x √27 ന്റെ വില എത്ര ?
20/y = y/45 , ആയാൽ y യുടെ വില എന്ത്?
50 ൻ്റെ ക്യൂബിൽ എത്ര സംഖ്യകൾ ഉണ്ടായിരിക്കും?