Challenger App

No.1 PSC Learning App

1M+ Downloads

If tanθ=34tan\theta=\frac{3}{4} and θ is acute, then what is the value of sin θ

A35\frac{-3}{5}

B35\frac{3}{5}

C45\frac{4}{5}

D45\frac{-4}{5}

Answer:

35\frac{3}{5}

Read Explanation:

Solution:

Given:

tanθ=34tan\theta=\frac{3}{4}

Formula used:

tanθ = Perpendicular/Base

sinθ = Perpendicular/Hypotenuse

By Pythagoras' theorem,

H2 = P2 + B2

Calculation:

image.png

tan θ = Perpendicular/Base =34=\frac{3}{4}

So, by Pythagoras' theorem,

H2 = P2 + B2

⇒ H2 = 32 + 42

⇒ H2 = (9 + 16)

⇒ H2 = 25

⇒ H = 5 cm

⇒ sin θ = Perpendicular/Hypotenuse =35=\frac{3}{5}

∴ The required value is 35\frac{3}{5}.


Related Questions:

If tan x = cot(45° + 2x), then what is the value of x?
sin50 - sin70 + sin10 =

In the given figure ABC=ABD,BC=BDthenCAB=\angle{ABC} = \angle{ABD}, BC = BD then \triangle{CAB} =\triangle___________

image.png
image.png

In the adjoining figure line l is parallel to m. What is the value of 2x+y ?

image.png