If the angles of a triangle are 30°, 45° and 105°, then the sides are in the ratioA√2 : 2 : 1+√3B√2 : √2 : 1+√3C√2 : 2 : √3D√2 : 2 : √3 -1Answer: A. √2 : 2 : 1+√3 Read Explanation: asinA=bsinB=csinC\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}sinAa=sinBb=sinCcsin105=sin(60+45)=sin60cos45+cos60sin45=3+122sin105=sin(60+45)=sin60cos45+cos60sin45=\frac{\sqrt3+1}{2\sqrt2}sin105=sin(60+45)=sin60cos45+cos60sin45=223+1\frac{b}{sin45}=\frac{c}{sin105}=>bc=sin45cos105=121+322=21+3\frac{b}{c}=\frac{sin45}{cos105}=\frac{\frac{1}{\sqrt2}}{\frac{1+\sqrt3}{2\sqrt2}}=\frac{2}{1+\sqrt3}cb=cos105sin45=221+321=1+32b:c=21+3b:c=\frac{2}{1+\sqrt3}b:c=1+32 Read more in App