App Logo

No.1 PSC Learning App

1M+ Downloads
If the distance between center to chord is 12 cm and the length of the chord is 10 cm, then the diameter of the circle is

A26 cm

B14 cm

C13 cm

D30 cm

Answer:

A. 26 cm

Read Explanation:

Given:

Given a circle with a chord of length = 10 cm = AB

Distance between centre to chord = 12 cm = OP

Concept:

The line perpendicular from the center to the chord bisects the chord.

image.png

Calculations:

From ΔAPO right-angled at P, Using Pythagoras theorem

AO2 = AP2 + OP2

AO2 =  52 + 122

⇒ AO = 13 cm = radius of the circle

The diameter of the circle = AO + OZ = 13 + 13 = 26 cm


Related Questions:

The area (in square units) of the quadrilateral ABCD, formed by the vertices A (0, -2), B (2, 1), C (0, 4), and D (-2, 1) is:
The complementary angle of supplementary angle of 130°

In a circle of centre O, PR = 3a + 5 and RQ = 5a – 5, OR = 15 units, ∠ORP = 90°. Find the radius of the circle.

image.png

 

∠APB = 62 º എങ്കിൽ ∠AQB എത്ര ? 

 

ABCD ഒരു സമചതുരവും APQC ഒരു ദീർഘചതുരവുമാണ്. B എന്നത് PQ-യിലെ ഒരു ബിന്ദുവാണ്. AC-6 സെന്റീമീറ്റർ AP യുടെ നീളം എത്രയാണ്?

image.png