App Logo

No.1 PSC Learning App

1M+ Downloads
If the external angle of a regular polygon is 18°, then the number of diagonals in this polygon is:

A180

B150

C170

D140

Answer:

C. 170

Read Explanation:

Solution:

Given:

External angle of a regular polygon is 18°

Formula used:

The number of sides for a regular polygon with an exterior angle of x degrees is  n=360xn=\frac{360}{x}

Number of diagonals, 

=>\frac{n(n-3)}{2}

where n is the number of sides.

Calculation: 

Substitute 18 for x in the above formula.

n=36018=20n=\frac{360}{18}=20

⇒ The number of sides for the given polygon is 20

Using the above formula for the number of diagonals, 

=>\frac{20(20-3)}{2}

=>\frac{20\times{17}}{2}=170

∴ The number of diagonals is 170.


Related Questions:

From a rectangular cardboard of 30×20cm30\times{20} cm squares of 5×5cm5\times{5} cm are cut from all four corners and the edges are folded to form a cuboid open at top. Find the volume of the cuboid.

28 cm ആരമുള്ള അർദ്ധഗോളത്തിന്റെ ഉപരിതലവിസ്തീർണം എത്ര?

What is the cost of ploughing a square field of dimensions 45m×45m45 m\times{45}m at a rate of Rs. 24 per m2?m^2?

A street of width 10 metres surrounds from outside a rectangular garden whose measurement is 200 m × 180 m. The area of the path (in square metres) is
8 സെന്റീമീറ്റർ ആരമുള്ള ലോഹ ഗോളത്തെ ഉരുക്കി 2 സെന്റീമീറ്റർ ആരമുള്ള ചെറു ലോഹ ഗോളങ്ങൾ ഉണ്ടാക്കിയാൽ ലഭിക്കുന്ന ചെറുഗോളങ്ങളുടെ എണ്ണം എത്ര ?