Challenger App

No.1 PSC Learning App

1M+ Downloads

If θ\theta is an acute angle, find the denominator A, when (cosecθcotθ)2=1cotθA(cosec\theta-cot\theta)^2=\frac{1-cot\theta}{A}

Acosecθ1cosec\theta-1

B1+sinθ1+sin\theta

Ccotθcot\theta

D1+cosθ1+cos\theta

Answer:

1+cosθ1+cos\theta

Read Explanation:

(cosecθcotθ)2=1cosθA(cosec\theta-cot\theta)^2=\frac{1-cos\theta}{A}

(cosecθcotθ)2=(1sinθcosθsinθ)2(cosec\theta-cot\theta)^2=(\frac{1}{sin\theta}-\frac{cos\theta}{sin\theta})^2

=(1cosθsinθ)2=(\frac{1-cos\theta}{sin\theta})^2

=(1cosθ)2sin2θ=\frac{(1-cos\theta)^2}{sin^2\theta}

=(1cosθ)2(1cos2θ)=\frac{(1-cos\theta)^2}{(1-cos^2\theta)}

=(1cosθ)(1cosθ)((1cosθ)(1+cosθ)=\frac{(1-cos\theta)(1-cos\theta)}{((1-cos\theta)(1+cos\theta)}

=(1cosθ)(1+cosθ)=\frac{(1-cos\theta)}{(1+cos\theta)}

which is equal to (1cosθ)A\frac{(1-cos\theta)}{A}


Related Questions:

P(x) ഒരു ഒന്നാം കൃതി ബഹുപദമാണ് , ഇവിടെ P(0) = 3 എന്നും P(1) = 0 എന്നും നൽകിയിരിക്കുന്നു. എന്നാൽ P(x) എന്താണ്?

If a + b + c = 7 and a3+b3+c33abc=175a^3 + b^3 + c^3-3abc = 175, then what is the value of (ab + bc + ca)?

If x + y + z = 19, xyz = 216 and xy + yz + zx = 114, then the value of x3+y3+z3+xyz\sqrt{x^3+y^3+z^3+xyz} is.

If a + b =5 and ab = 6 finda3+b3a^3+b^3

If x+12x=3x+\frac{1}{2x}=3, find the value of 8x3+1x38x^3+\frac{1}{x^3}.