Challenger App

No.1 PSC Learning App

1M+ Downloads
If time upstream = n × time downstream and speed in still water is 'x' and speed of stream is 'y', then find x : y.

An2\frac{n}{2}

B(n1)(n+1)\frac{(n-1)}{(n+1)}

Cn(n1)\frac{n}{(n-1)}

D(n+1)(n1)\frac{(n+1)}{(n-1)}

Answer:

(n+1)(n1)\frac{(n+1)}{(n-1)}

Read Explanation:

Speed of boat in still water = x

Speed of current = y

Upstream speed = x - y

Downstream speed = x + y

If time upstream = n ×\times time downstream

Time ratio of upstream to downstream = n : 1

As we know,

Speed is inversely proportional to time, then

Speed ratio of upstream to downstream = 1 : n

(x - y) : (x + y) = 1 : n

(xy)(x+y)=1n⇒\frac{(x-y)}{(x+y)}=\frac{1}{n}

(x+y)(xy)=n1⇒\frac{(x+y)}{(x-y)}=\frac{n}{1}

Componendo or Dividendo

xy=(n+1)(n1)\frac{x}{y}=\frac{(n+1)}{(n-1)}

⇒ x : y = (n + 1) : (n - 1)


Related Questions:

Speed of a boat is 5 km per hour in still water and the speed of the stream is 3 km per hour. If the boat takes 3 hours to go to a place and come back, the distance of the place is :
What is the time taken by a boat to travel 120km upstream and back to the starting point if the speed of the boat is 25 km/hr, and the speed of stream is 5km/hr?
The speed of a boat in still water is 12 km/h. If the boat covers a distance of 38 km upstream in 4 hours, then the speed of the stream (in km/h) is:
The total time by the boat to cover 72 km upstream and 180 km downstream in 16 hours. The total time taken by the same boat to cover 108 km upstream and 126 downstream in 16 hours. If the sum of the upstream speed and downstream speed of the boat is 30 km, then find the speed of the stream.
താഴേക്ക് ഓടുന്ന ഒരു ബോട്ട് 16 കിലോമീറ്റർ ദൂരം 2 മണിക്കൂർ കൊണ്ട് താണ്ടുന്നു, അതേ ദൂരം മുകളിലേക്ക് കയറാൻ 4 മണിക്കൂർ എടുക്കും. നിശ്ചലമായ വെള്ളത്തിൽ ബോട്ടിന്റെ വേഗത എത്രയാണ്?