Challenger App

No.1 PSC Learning App

1M+ Downloads
If time upstream = n × time downstream and speed in still water is 'x' and speed of stream is 'y', then find x : y.

An2\frac{n}{2}

B(n1)(n+1)\frac{(n-1)}{(n+1)}

Cn(n1)\frac{n}{(n-1)}

D(n+1)(n1)\frac{(n+1)}{(n-1)}

Answer:

(n+1)(n1)\frac{(n+1)}{(n-1)}

Read Explanation:

Speed of boat in still water = x

Speed of current = y

Upstream speed = x - y

Downstream speed = x + y

If time upstream = n ×\times time downstream

Time ratio of upstream to downstream = n : 1

As we know,

Speed is inversely proportional to time, then

Speed ratio of upstream to downstream = 1 : n

(x - y) : (x + y) = 1 : n

(xy)(x+y)=1n⇒\frac{(x-y)}{(x+y)}=\frac{1}{n}

(x+y)(xy)=n1⇒\frac{(x+y)}{(x-y)}=\frac{n}{1}

Componendo or Dividendo

xy=(n+1)(n1)\frac{x}{y}=\frac{(n+1)}{(n-1)}

⇒ x : y = (n + 1) : (n - 1)


Related Questions:

The speed of a boat is 10 km/h in still water. It covers a distance of 90 km in 15 hours going upstream. What is the speed of the stream?
താഴേക്ക് ഓടുന്ന ഒരു ബോട്ട് 16 കിലോമീറ്റർ ദൂരം 2 മണിക്കൂർ കൊണ്ട് താണ്ടുന്നു, അതേ ദൂരം മുകളിലേക്ക് കയറാൻ 4 മണിക്കൂർ എടുക്കും. നിശ്ചലമായ വെള്ളത്തിൽ ബോട്ടിന്റെ വേഗത എത്രയാണ്?
A man goes downstream with a boat to some destination and returns upstream to his original place in 5 hours. If the speed of the boat in still water and the stream are 10 km/hr and 4 km/hr respectively, the distance of the destination from the starting place is
A boat travels 60km upstream and comes back in 8 hours. What is the speed of the boat, if the speed of stream is 4 km/hr?
A man can row 6 km/h in still water. If the speed of the current is 2 km/h, it takes 3 hours more in upstream than in the downstream for the same distance. The distance is