Challenger App

No.1 PSC Learning App

1M+ Downloads

If x + y + z = 10, x3+y3+z3=75x^3 + y^3 + z^3 = 75 and xyz = 15, then find the value of x2+y2+z2xyyzzxx^2 + y^2 + z^2-xy-yz-zx

A3

B5

C6

D4

Answer:

A. 3

Read Explanation:

Solution:

Given:

x + y + z = 10, (x3 + y3 + z3) = 75 and xyz = 15

Formula:

(x3 + y3 + z3 - 3xyz) = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)

Calculation:

According to the given formula

(x3 + y3 + z3 - 3xyz) = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)

⇒ 75 - 3 ×\times 15 = 10 ×\times (x2 + y2 + z2 - xy - yz - zx)

⇒ 75 - 45 = 10 ×\times (x2 + y2 + z2 - xy - yz - zx)

⇒ (x2 + y2 + z2 - xy - yz - zx) = 3010\frac{30}{10} 

∴ x2 + y2 + z2 - xy - yz - zx = 3

Hence option(A) is correct answer.


Related Questions:

(2x)(2y)=8,(9x)(3y)=81(2^x)(2^y)=8 , (9^x)(3^y)=81So what is the value of x and y?

Find the degree of the following equation: X² - 5X + 6 = (X - 3)(x - 2)
What number is x if |x +2|=|x-5|?
2x - 3y is a factor of: