Challenger App

No.1 PSC Learning App

1M+ Downloads

If x + y + z = 10, x3+y3+z3=75x^3 + y^3 + z^3 = 75 and xyz = 15, then find the value of x2+y2+z2xyyzzxx^2 + y^2 + z^2-xy-yz-zx

A3

B5

C6

D4

Answer:

A. 3

Read Explanation:

Solution:

Given:

x + y + z = 10, (x3 + y3 + z3) = 75 and xyz = 15

Formula:

(x3 + y3 + z3 - 3xyz) = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)

Calculation:

According to the given formula

(x3 + y3 + z3 - 3xyz) = (x + y + z) (x2 + y2 + z2 - xy - yz - zx)

⇒ 75 - 3 ×\times 15 = 10 ×\times (x2 + y2 + z2 - xy - yz - zx)

⇒ 75 - 45 = 10 ×\times (x2 + y2 + z2 - xy - yz - zx)

⇒ (x2 + y2 + z2 - xy - yz - zx) = 3010\frac{30}{10} 

∴ x2 + y2 + z2 - xy - yz - zx = 3

Hence option(A) is correct answer.


Related Questions:

If x + y = 11, then (1)x+(1)y(-1)^x + (-1)^y is equal to _____

(where x, y are whole numbers).

In a class there are 4 more girls than boys. One day 8 boys were absent, the number of girls just twice the number of boys. Then find the number of boys in the class.
If p : q = r : s , s = 4p² and 2qr = 64, then find the value of 2p + 3s

Calculate the value of p, if f(p)=P228p+196f(p)= P^2 - 28p+196.

Number equivalent to the roman number CDLXXXIX is :