Challenger App

No.1 PSC Learning App

1M+ Downloads

If x4+1x4=34x^4+\frac{1}{x^4}=34, then the value of (x1x)2(x-\frac{1}{x})^2 will be

A7

B-7

C-3

D4

Answer:

D. 4

Read Explanation:

Solution:

x4+1x4=34x^4+\frac{1}{x^4}=34

⇒ adding 2 on both side we get

x4+(1x4+2=34+2⇒x^4+(\frac{1}{x^4}+2=34+2

(x2)2+(1x2)2+2×x2×1x2=36⇒(x^2)^2+(\frac{1}{x^2})^2+2\times{x^2}\times{\frac{1}{x^2}}=36

(x2+1x2)2=36(x^2+\frac{1}{x^2})^2=36

(x2+1x2)=6(x^2+\frac{1}{x^2})=6     -----1

⇒ we need to find the value of (x1x)2(x-\frac{1}{x})^2

(x1x)2=x2+1x22×x×1x(x-\frac{1}{x})^2=x^2+\frac{1}{x^2}-2\times{x}\times{\frac{1}{x}}

⇒ put the value from equation 1 in above equation we will get

(x1x)2=62(x-\frac{1}{x})^2=6-2

(x1x)2=4(x-\frac{1}{x})^2=4


Related Questions:

If 2x + y = 6 and xy = 4, then find the value of 8x3 + y3 is:

ഒരു സമബഹുഭുജത്തിന്റെ ഒരു ആന്തര കോണിന്റെ അളവ് 150 ആണ്. ഈ ബഹുഭുജത്തിന് എത്ര വശങ്ങളുണ്ട് ?

If x : y = 2 : 3 then the value of 3x+2y9x+5y\frac{3x+2y}{9x+5y} will be

If a - b = 4 and a3 - b3 = 88, then find the value of a2 - b2.

The sum of two numbers is 59 and their product is 840. Find the sum of their squares.