x∽U(-3,3) , P(x > k)=1/3 ആണെങ്കിൽ k എത്ര ?A1B-1C0D2Answer: A. 1 Read Explanation: x∽U(−3,3)x∽U(-3,3)x∽U(−3,3)f(x)=1b−a=13+3=16f(x)=\frac{1}{b-a}=\frac{1}{3+3}=\frac{1}{6}f(x)=b−a1=3+31=61 P(x > k)=1/3 ∫k3f(x)dx=∫k316dx=13\int_k^3f(x)dx=\int_k^3\frac{1}{6}dx=\frac{1}{3}∫k3f(x)dx=∫k361dx=31=16[x]k3=16(3−k)=13=\frac{1}{6} [x]_k^3 = \frac{1}{6}(3-k)=\frac{1}{3}=61[x]k3=61(3−k)=313−k=23-k =23−k=2k=3−2=1k=3-2=1k=3−2=1 Read more in App