Challenger App

No.1 PSC Learning App

1M+ Downloads

In a ΔABC right triangle at B. If SinC=6061SinC=\frac{60}{61} and CosA=6061CosA=\frac{60}{61}, then find the value of the expression tanA+cot(A+C)CotC+SecASinC\frac{tanA+cot(A+C)}{CotC+SecASinC}

A11/61

B11/60

C11/71

D11/21

Answer:

C. 11/71

Read Explanation:

Solution:

Given:

In a ΔABC right triangle at B.

SinC=6061SinC=\frac{60}{61}

CosA=6061CosA=\frac{60}{61}

Concept used:

Sinθ=ph=6061,Cosθ=bhSin\theta=\frac{p}{h}=\frac{60}{61},Cos\theta=\frac{b}{h}

image.png

If x + y = 90, then sinx = siny

Calculation:

SinC=ph=6061SinC=\frac{p}{h}=\frac{60}{61}

The value of base 'b' for the triangle ΔABC right-angle at B can be calculated by using the Pythagoras theorem.

⇒ b2 = h2 - p2

⇒ b2 = 612 - 602

⇒ b2 = (61 + 60)(61 - 60)

⇒ b2 = 121

⇒ b = 11 units

According to the question, the required image is:

image.png

Now, 

tanA=1160tanA=\frac{11}{60}

CotC=1160CotC=\frac{11}{60}

SecA=6160SecA=\frac{61}{60}

Since sinC=cosA=6061sinC=cosA=\frac{60}{61}

A + C = 90

cot(A + C) = cot(90) = 0

Now, substitute the value of the respective variable in the required expression,

=1160+01160+6160×6061=\frac{\frac{11}{60}+0}{\frac{11}{60}+\frac{61}{60}\times{\frac{60}{61}}}

=11601160+1=\frac{\frac{11}{60}}{\frac{11}{60}+1}

=11607160=\frac{\frac{11}{60}}{\frac{71}{60}}

=1171=\frac{11}{71}

The value of the required expression is=1171=\frac{11}{71}


Related Questions:

what is the ratio sides of the triangle

1000114738.jpg

Find the area of the parallelogram with sides AB = 8, AC = 4, ∠ BAC = 30

1000114769.jpg
When the sun is at an elevation of 45°, the length of the shadow of a tree is 15meters. Then the height of the tree (in metres) is :
A kite is flying at a height of 60m from the level surface attached to a string inclined at 30° to the horizontal. Then the length of the string in metres is :
A triangle is to be drawn with one side 6cm and an angle on it is 60 what should be the minimum length of the side opposite to this angle?