In a ΔABC right triangle at B. If SinC=6160 and CosA=6160, then find the value of the expression CotC+SecASinCtanA+cot(A+C)
A11/61
B11/60
C11/71
D11/21
Answer:
C. 11/71
Read Explanation:
Solution:
Given:
In a ΔABC right triangle at B.
SinC=6160
CosA=6160
Concept used:
Sinθ=hp=6160,Cosθ=hb
If x + y = 90∘, then sinx = siny
Calculation:
SinC=hp=6160
The value of base 'b' for the triangle ΔABC right-angle at B can be calculated by using the Pythagoras theorem.
⇒ b2 = h2 - p2
⇒ b2 = 612 - 602
⇒ b2 = (61 + 60)(61 - 60)
⇒ b2 = 121
⇒ b = 11 units
According to the question, the required image is:
Now,
tanA=6011
CotC=6011
SecA=6061
Since sinC=cosA=6160
A + C = 90∘
cot(A + C) = cot(90∘) = 0
Now, substitute the value of the respective variable in the required expression,
=6011+6061×61606011+0
=6011+16011
=60716011
=7111
The value of the required expression is=7111
