App Logo

No.1 PSC Learning App

1M+ Downloads
In triangle ABC ∠A=120°. AB=AC= 10 centimetres. What is the length of BC?

A5√3

B10√3

C10+√3

D5+√3

Answer:

B. 10√3

Read Explanation:

In triangle ABCABC, we are given:

  • ∠A=120

  • AB=AC = 10 cm (i.e., triangle ABC is isosceles with AB = AC).

We need to find the length of BC.

Step 1: Use the Law of Cosines.

The Law of Cosines states that in any triangle:

BC²=AB²+AC²−2×AB×AC×cos⁡(∠A)

Substitute the known values:

  • AB=AC=10 cm,

  • ∠A=120⁰,

  • cos⁡(120⁰)= −½

So, we have:

BC²=10²+10²−2×10×10×(−½)

BC²=100+100+100=300

Thus,

BC=√300=10√3 cm.

Conclusion:

The length of BC is 10√3cm, which is approximately 17.32cm

OR

1000126312.jpg

Let P be the midpoint of BC

AP = 10 × sin60

= 10 × √3/2

= 10√3/2

= 5√3

Similarly

PC = 5√3

AC = 5√3 + 5√3

= 10√3


Related Questions:

3.6322.3723.63+2.37=?\frac{3.63^2-2.37^2}{3.63+2.37}=?

If 4(xy)=644^{(x -y) }= 64 and 4(x+y)=10244^{(x + y) }= 1024, then find the value of x.

(323+2)+(3+232)= (\frac {\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}})+(\frac {\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}) =

x200=0.08\frac{\sqrt{x}}{200}=0.08ആയാൽ x എത്ര?