∫(x2+1x)dx=\int (\frac{x^2+1}{x})dx = ∫(xx2+1)dx= Ax+log∣x∣+Cx +log |x| +Cx+log∣x∣+CBx22+x+C\frac{x^2}{2} +x +C2x2+x+CCx2+log∣x∣+Cx^2 +log |x| +Cx2+log∣x∣+CDx22+log∣x∣+C\frac{x^2}{2} +log |x| +C2x2+log∣x∣+CAnswer: x22+log∣x∣+C\frac{x^2}{2} +log |x| +C2x2+log∣x∣+C Read Explanation: ∫(x2+1x)dx=∫(x2x)dx+∫(1x)dx\int (\frac{x^2+1}{x})dx = \int (\frac{x^2}{x})dx+\int(\frac{1}{x})dx∫(xx2+1)dx=∫(xx2)dx+∫(x1)dx =∫xdx+∫1xdx=x22+log∣x∣+C=\int x dx + \int\frac{1}{x}dx = \frac{x^2}{2} +log |x| +C=∫xdx+∫x1dx=2x2+log∣x∣+C Read more in App