Challenger App

No.1 PSC Learning App

1M+ Downloads
Komal invested a sum of ₹5000 at 20% per annum compound interest, componded annually. If she received an amount of ₹7200 after n years, the value of n is:

A2

B1.4

C2.5

D3

Answer:

A. 2

Read Explanation:

Here's how to solve this compound interest problem:

1. Understand the Compound Interest Formula:

  • A=P(1+R/100)nA = P (1 + R/100)^n

    • A = Amount after n years

    • P = Principal (initial sum of money)

    • R = Rate of interest per annum

    • n = Number of years

2. Set up the equation:

  • A = ₹7200

  • P = ₹5000

  • R = 20%

  • n = ? (what we need to find)

  • Substitute the values into the formula:

    • 7200=5000(1+20/100)n7200 = 5000 (1 + 20/100)^n

3. Solve for n:

  • Divide both sides by 5000:

    • 7200/5000=(1+1/5)n7200 / 5000 = (1 + 1/5)^n

    • 1.44=(6/5)n1.44 = (6/5)^n

    • 1.44=(1.2)n1.44 = (1.2)^n

4. Find the value of n by trial and error or by using logarithms (simpler trial and error in this case):

  • (1.2)1=1.2(1.2)^1 = 1.2

  • (1.2)2=1.44(1.2)^2 = 1.44

5. Conclusion:

  • Therefore, n = 2

The value of n is 2.


Related Questions:

20000 രൂപക്ക് 5% പലിശ നിരക്കിൽ 2 വർഷ കാലാവധിയിൽ സാധാരണ പലിശയും കൂട്ടുപലിശയും തമ്മിലുള്ള വ്യത്യാസം എന്താണ്
Find the compound interest on ₹80,000 at 10% per annum for 2 years, compounded annually.

Find the compound interest on ₹20,000 at 20% p.a for 1121\frac12 years compounded half-yearly.

5000 രൂപ പ്രതിവർഷം 10% കൂട്ടുപലിശ രീതിയിൽ 3 വർഷത്തേക്ക് നിക്ഷേപിക്കുന്നു . മൂന്നുവർഷത്തിനുശേഷം കൂട്ടുപലിശ കണ്ടെത്തുക.
Find the ratio of CI to SI on a certain sum at 10% per annum for 2 years?